

World Meteorological Organization

Working together in weather, climate and water

Climate Services and Agriculture

Robert Stefanski
Chief
Agricultural Meteorology Programme

World Meteorological Organization

- United Nations agency for weather, climate, hydrology and water resources and related environmental issues.
- 189 Members from National Meteorological and Hydrological Services (NMHS)
- 10 major scientific & technical programmes (Secretariat)
- 8 Technical Commissions advise & guide activities of programmes (Experts)
- 6 Regional Associations involved in implementation

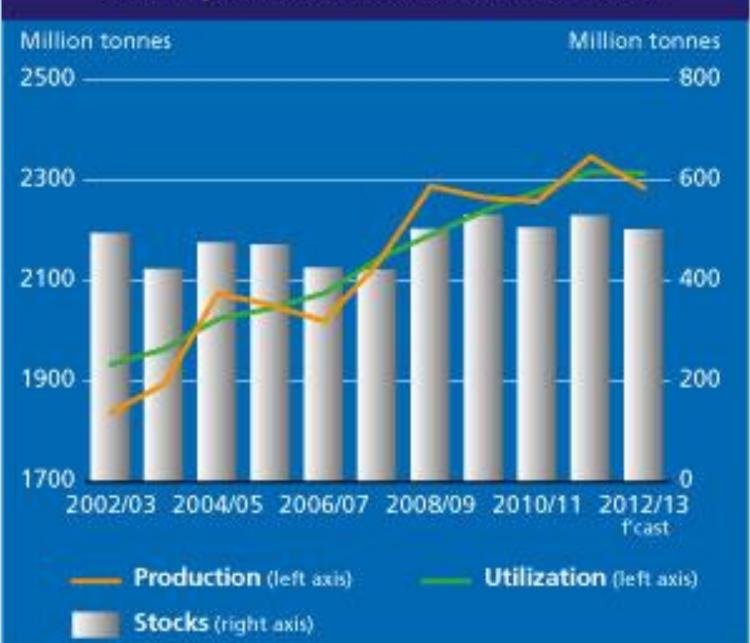
Five priority Areas

- Global Framework for Climate Services;
- Aviation meteorological services;
- Capacity-building for the developing and least developed countries;
- Implementation of the WMO Integrated Global Observing System (WIGOS) and WMO Information System (WIS);
- Disaster risk reduction

WMO Technical Commissions

- Commission for Aeronautical Meteorology (CAeM)
- Commission for Agricultural Meteorology (CAgM)
- Commission for Atmospheric Sciences (CAS)
- Commission for Basic Systems (CBS)
- Commission for Climatology (CCI)
- Commission for Hydrology (CHy)
- Commission for Instruments and Methods of Observation (CIMO)
- Joint WMO-IOC Commission for Oceanography and Marine Meteorology (JCOMM)

Food Security


Recent Increases in Food Prices

FAO Food Price Index

Cereal production, utilization and stocks

Four Aspects of Food Security (FAO)

- Food Availability: Sufficient quantities of quality food supplied through domestic production, imports, food aid
- Food Access: Access by individuals to adequate resources for obtaining food for a nutritious diet
- Utilization: Through adequate diet, clean water, sanitation, health care for nutritional well-being. Importance of nonfood inputs in food security
- Stability: Population, household, individuals must have access to adequate food at all times. No risk of losing access to sudden shocks (economic or climatic crisis) Refers to both availability and access

Four Aspects of Food Security (FAO)

- Food Availability: Sufficient quantities of quality food supplied through domestic production, imports, food aid
- Food Access: Access by individuals to adequate resources for obtaining food for a nutritious diet
- Utilization: Through adequate diet, clean water, sanitation, health care for nutritional well-being. Importance of nonfood inputs in food security
- Stability: Population, household, individuals must have access to adequate food at all times. No risk of losing access to sudden shocks (economic or climatic crisis) Refers to both availability and access

Use of Weather and Climate Information

Global Framework on Climate Services (GFCS)

Global Framework for Climate Services

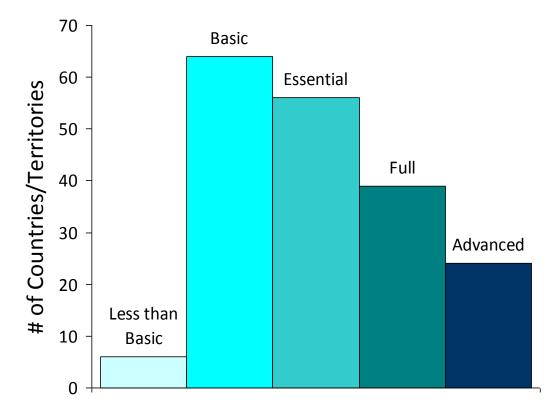
Goal:

 Enable better management of the risks of climate variability and change and adaptation to climate change at all levels, through development and incorporation of science-based climate information and prediction into planning, policy and practice.

WORLD CLIMATE CONFERENCE - 3

Geneva, Switzerland
31 August-4 September 2009

Why a Framework for Climate Services?


- Present capabilities for providing climate services do not exploit all that we know about climate
- Present capabilities fall far short of meeting current and future needs and delivering their full and potential benefits, especially in developing countries

A Framework for Climate Services will build on existing capacities and leverage these through coordination to address these shortcomings

Why a Framework for Climate Services?

 Many countries lack the infrastructural, technical, human and institutional capacities to provide high-quality climate services. Infrastructural Capacities of Countries as of Aug 2010 to provide Basic, Essential, Full and Advanced Climate Services.

Infrastrucal Capacity Category

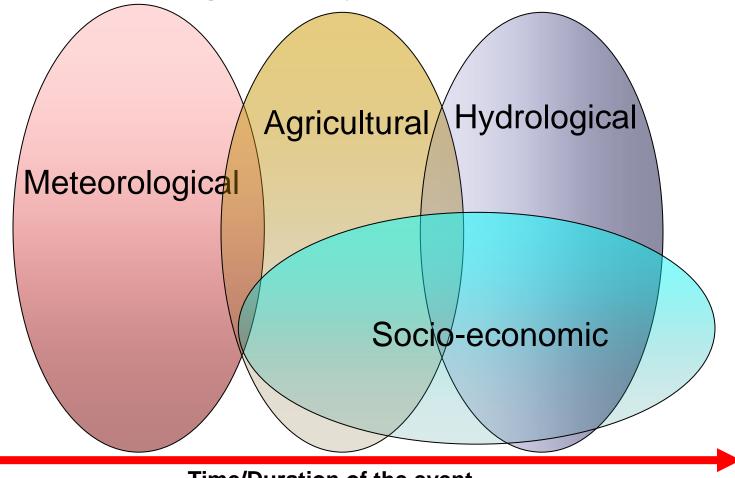
Why a Framework for Climate Services?

 Climate services do not get the last mile to those who need them the most.

Priorities

- Agriculture
- Disaster risk reduction
- Water

Health

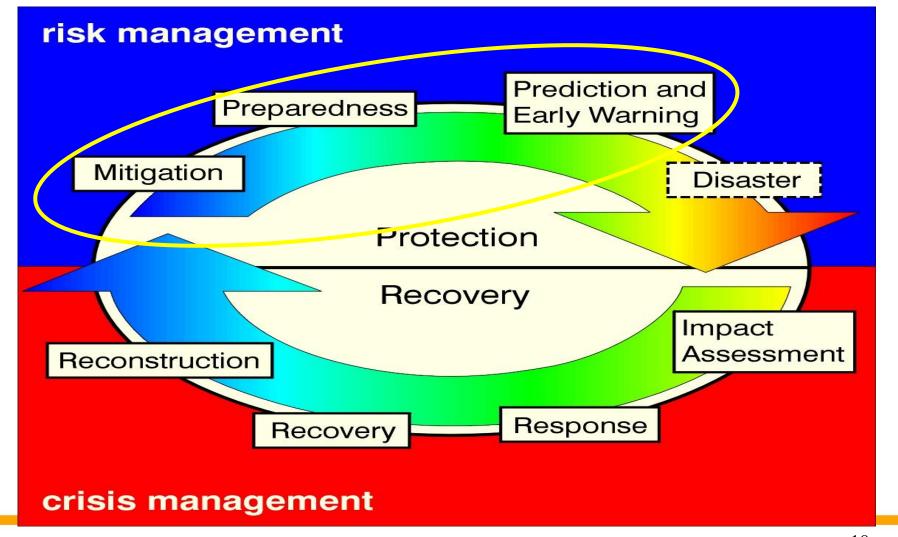


Natural and Social Dimensions of Drought

Decreasing emphasis on the natural event (precipitation deficiencies)

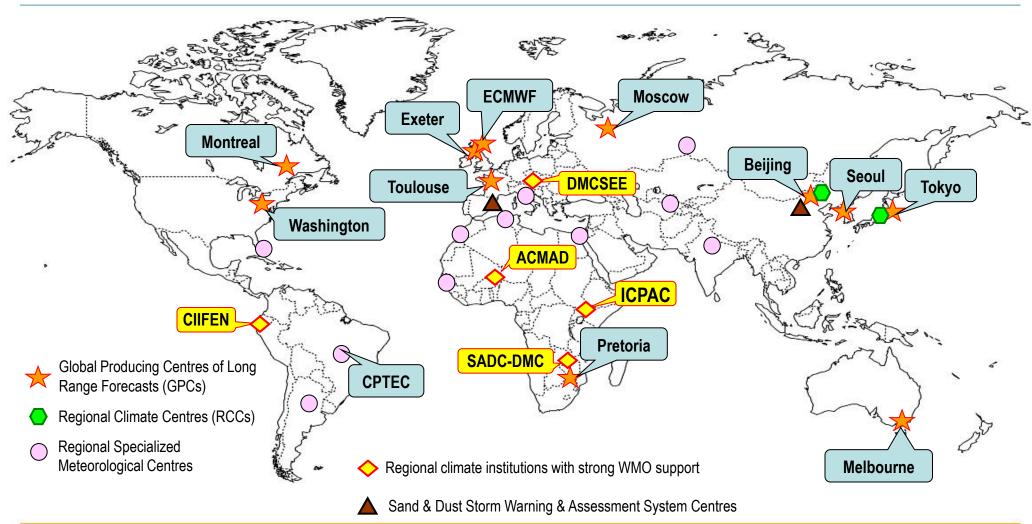
Increasing emphasis on water/natural resource management

Increasing complexity of impacts and conflicts



Time/Duration of the event

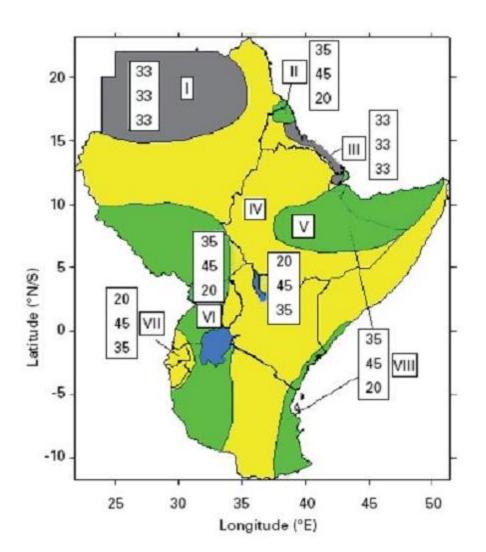
Source: Wilhite 2006


The Cycle of Disaster Management

Source: Wilhite 2006



WMO network of institutions



Regional Climate Outlook Forums (RCOFs)

GHACOF Products & Applications

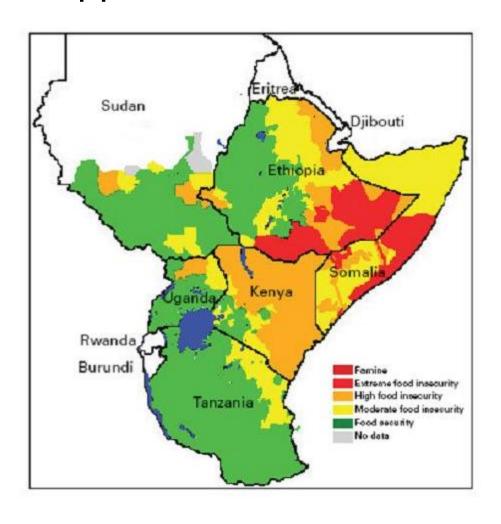


Figure 2(a) — Greater Horn of Africa Consensus Climate Outlook for March to May 2008 by ICPAC and partners including WMO and IRI.

Figure 2(b) — Food Security Outlook for March to July 2008 by Famine Early Warning Systems Network (FEWSNET)

High-Level Meeting on National Drought Policies (HMNDP)

11-13 March 2013

Why a HMNDP is needed?

- A high level meeting could help develop approaches through
 - developing a common understanding of the issues involved,
 - discussing the different approaches that could be incorporated into a national drought policy and
 - finally establishing a framework of a national drought policy that could help all the nations around the world.

www.wmo.int/hmndp

WMO Publications on Drought

AGRICULTURAL DROUGHT INDICES

PROCEEDINGS OF AN **EXPERT MEETING**

2-4 JUNE 2010, MURCIA, SPAIN

World Meteorologica

World Agricultural

United Nations National Drought International Strategy for

Hydrographic

NATIONAL DROUGHT POLICY PROCEEDINGS OF AN EXPERT MEETING

TOWARDS A COMPENDIUM ON

JULY 14-15 2011, WASHINGTON DC, USA

Organization gricultural Meteorology

Environmental Science

National Drought

Department of Agricultur

Integrated Drought Management Programme (IDMP)

Integrated Drought Management Programme

- The expected services to be provided are:
 - Regional coordination
 - Pilot projects
 - Collection and dissemination of information
 - Guidelines, methodologies, tools
 - Capacity building

Current Actions - IDMP

- Draft Concept Note has been developed and is currently being sent to donors.
- Ad-hoc Steering Committee will be established Fall 2012.
- IDMP webpage: www.wmo.int/idmp
- The IDMP concept being promoted at various meetings
- IDMP will integrate and incorporate WMO efforts on drought indices and High-Level Meeting on National Drought Polices (HMNDP)

Role of Weather and Climate Information to Agriculture Agrometeorology

Users of Agrometeorological Information

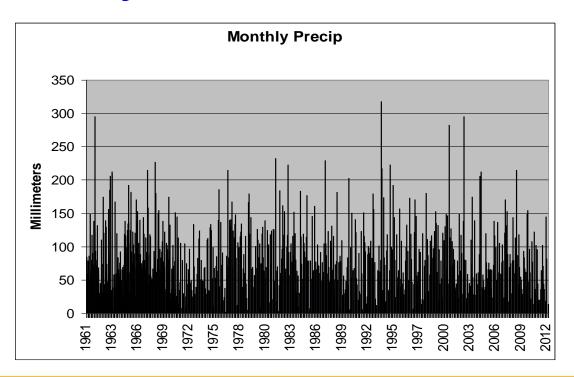
Any agricultural decision-maker:

- International officials (i.e. Red Cross, WFP, UN)
- Government official
- Extension agent
- Farmers, ranchers, foresters, fishers
- Media
- General public

Key Questions in AgroMeteorology

• What are the weather / climate events that impact agricultural decision-making?

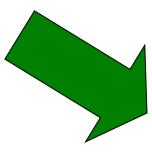
• How to relate weather / climate information to meaningful agricultural actions / practices?


Economic impact using 3-7 Day Weather Forecasts in India

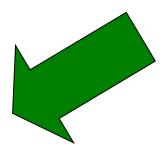
Crop	Station name	% change in cost of Prod. (per acre)	% change in crop yield (per acre)	% change in profit (per acre)	
Cotton	Hissar Coimbatore	1	14	10	
		-4	16	16	
Rice	Ludhiana Kalyani	-6	9	18	
		-3	21	29	
Wheat	Ludhiana	-6	9	17	
Mustard	Hissar	-3	8	13	

Climate Services and Agrometeorology

- Need Historical Climate Data
- Quality controlled



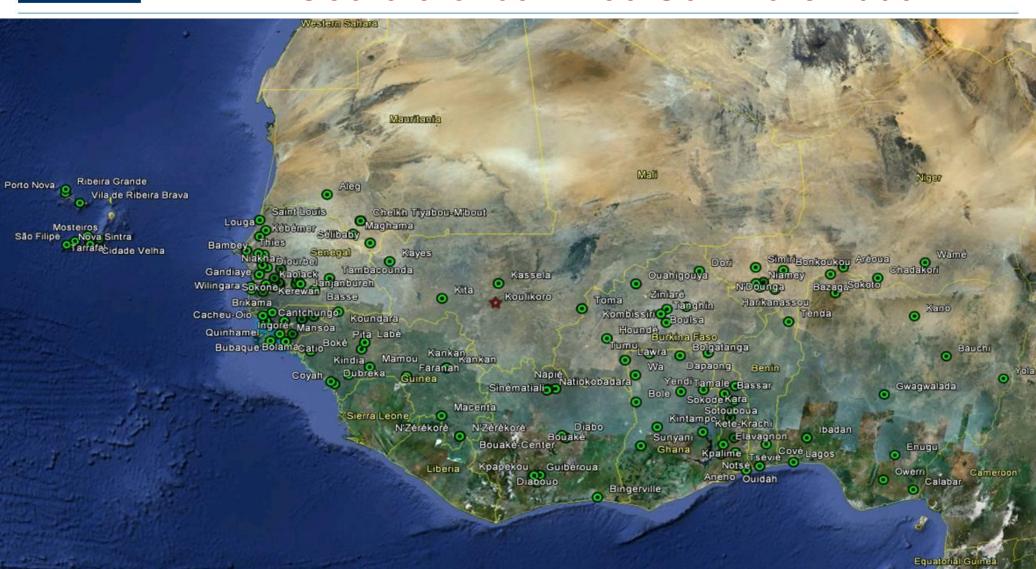
	Α	В	С	D	Е	F	G
1		Year	Month	Temp	Diff	Precip	Diff
2		1864	1	-4.2	-5.0	13.6	-68.4
3		1864	2	-0.7	-3.0	17.2	-63.8
4		1864	3	5.3	0.2	32.7	-46.3
5		1864	4	8.3	-0.5	35.2	-29.8
6		1864	5	13.5	0.5	68.9	-8.1
7		1864	6	15.6	-0.9	115.2	26.2
8		1864	7	19.3	0.2	37.7	-29.3
9		1864	8	17.4	-0.8	87.8	8.8
10		1864	9	13.5	-1.4	84.8	3.8
11		1864	10	8.1	-2.0	69.9	-7.1
12		1864	11	3.7	-1.3	104	12.0
13		1864	12	-1.5	-3.3	4.5	-82.5
14		1865	1	2	1.2	49.4	-32.6
15		1865	2	-0.4	-2.7	56.6	-24.4
16		1865	3	0.5	-4.6	30.6	-48.4
17		1865	4	12.4	3.6	18.3	-46.7
18		1865	5	15.7	2.7	81.7	4.7
19		1865	6	17.8	1.3	75.9	-13.1
20		1865	7	19.8	0.7	52	-15.0
21		1865	8	17.2	-1.0	138.4	59.4
22		1865	9	16.2	1.3	3.2	-77.8
23		1865	10	10.3	0.2	156.9	79.9
24		1865	11	5.7	0.7	70.3	-21.7
25		1865	12	-0.2	-2.0	35.1	-51.9
26		1866	1	2.9	2.1	50	-32.0
27		1866	2	5.2	2.9	93.8	12.8
28		1866	3	4.3	-0.8	169	90.0
29		1866	4	9.6	0.8	75.7	10.7
30		1866	5	11.2	-1.8	144.1	67.1
31		1866	6	18	1.5	46.5	-42.5
32		1866	7	18.4	-0.7	101.3	34.3
33		1866	8	16.1	-2.1	92.6	13.6
34		1866	9	15.3	0.4	120.7	39.7


Climate Services and Agrometeorology

- Historical Climate Data
- Crop Information
- Basic Soil Information

Simple Crop Model

Crop Advice for Rural Farmers



Roving Seminars in Western Africa: Georeference – 159 Seminars 2009-12

World Meteorological Organization

Working together in weather, climate and water

Thank You

rstefanski@wmo.int www.wmo.int/agm